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FOREWORD

This document describes a portion of the research conducted in a
study of the application of the blast-wave theory of meteoroid impact to the
problem of space radiator design. Other publications generated under this
NASA-sponsored program include "Nonsimilar Solutions for Impact-
Generated Shock Propagation in Solids, "CAL Report AI-1821-A-2, NASA
CR-54251, January 1965, and '"'On the Possibility of Simulating Meteoroid
Impact by the Use of Lasers, "CAL Report AI-1821-A-1, NASA CR-54029,

April 1964,
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ABSTRACT \ & M D

This report presents a study of the tensile stresses produced when a
compressive spherical wave is reflected from a plane, stress-free surface.
Two classes of exact solution of the problem, within the approximation of
linear elasticity, are reviewed. In one class, the incident stress distribu-
tion is spherically symmetric, while in the other it is only axisymmetric,
allowing a variation in one angular coordinate. A significant difference
exists between the two classes in the laws relating the strength of incident
and reflected waves. The implications of this difference on the reflection
of impact-generated stress waves are discussed.

The exact solution for cases where the incident wave exhibits spher-
ical symmetry is examined in detail, and simple quadrature formulas for
obtaining the reflected stress profile for a given incident waveform are pre-
sented. These results are compared with the commonly used solution which
considers only the stresses due to a source and its image. The conditions
under which this further approximation is acceptable are discussed.

The limitations of a linear elastic model in predicting spall fracture

are pointed out, and the areas most in need of further studyare indicated.

firol_J
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I. INTRODUCTION

The impact of fast-moving particles drives strong compression waves
into a solid body. When such waves arrive at a stress-free surface, they
are reflected as tensile waves. Depending on the intensity and waveform of
the incident pulse, the tensile stresses generated upon reflection may cause
a fracture near the free surface, a process referred to as spallation.
Damage of this sort can be a source of great concern in certain situations,
for example in the case of space radiator systems.

A precise theoretical treatment of the spallation problem is made
difficult by the fact that different equations apply during successive stages
of the deformation. In the early stages, for example, the compression con-
sists of a strong shock wave, whose motion through the solid is described
by the equations of a compressible, inviscid fluid. The shock decays as it
propagates into the target, and the material strength then begins to play a
role. During this stage, plastic deformation predominates for a while, and
ultimately the entire process becomes elastic.

Many approximations have been proposed for treating tflis problem.
One of the simplest of theseﬂ£ is to use the inviscid, compressible-fluid
description up to the point where the incident wave first reaches the free
surface. From that instant on, the motion is assumed to be described by
the classical equations of linear elasticity, using the pressure distribution
behind the shock to give the incident compressive stress distribution. The
entire problem is then reduced to the simple question: What tensile stresses
are developed along the axis of symmetry when a given compressive stress

wave reflects from a plane, stress-free boundary?

* See, for example, Ref. 3, Appendix A.
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The fact is that this question has never been thoroughly examined,
although the needed results are contained in a number of papers, particu-
larly from the field of seismology. The principal objective of this report
is to extract these results in a form particularly suited to the spallation
problem, using them to evaluate further approximations that can be used,
and to shed light on the effects of various parameters.

The approximation in which the spall-fracture problem is to be
treated in this report is formulated in Section II. A brief review is given
there of the present state of knowledge of the stress distributions that are
generated in hypervelocity impact. With the incident distribution considered
to be a specified function, the question of its reflection from a free surface
is then posed in the linear elastic approximation.

Solution of the specified elastic problem begins in Section III with a
review of a method of solution which uses a pressurized cavity as the source
of the spherical disturbance, together with an image system to preserve
the boundary conditions at the free surface. The contributions arising from
various portions of the image system are presented in detail, in order to
assess their relative importance. It is shown that, for incident stress pro-
files which rise instantaneously to a maximum and then decay rapidly, the
maximum tensile stress at the front of the reflected wave can be adequately
calculated by the approximation that considers only the source cavity and an
image cavity experiencing the same pressure, but with opposite sign.

In Section IV, a second class of solution is considered, in which the
incident wave is generated by the application of a point force to one free sur-
face of a slab. The wave that results is spherical in shape, but displays an

angular variation not present in the spherically symmetric solution. This

2 Al-1821-A-3




angular variation gives rise to an increase in the amplitude of the reflected
wave.

Section V returns to a consideration of the spherically symmetric
case, and the solution for a point source and its image system is cast in
the form of a quadrature formula from which the reflected stress profile
can be calculated, once the incident profile is known.

The report concludes with a discussion of the areas where deficien-
cies still exist in the linear-elastic treatment of the problem, and mention
is made of the most important areas in which improvement over such a
model should be sought. Finally, the implications of these studies on the

interpretation of spall-fracture experiments are pointed out.
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II. STATEMENT OF THE PROBLEM

General Considerations

When a projectile strikes a solid target at high speed, a shock wave
is generated which becomes approximately spherical in shape after a
period several times that required for the projectile to travel its own length. 4
The shock decays in strength as it propagates through the target and
ultimately degenerates to an elastic wave. If it encounters a stress-free
surface, it is reflected as a tensile wave, whose amplitude may be sufficient
to cause a spall fracture. The fundamental problem is to determine what
target thickness is required to prevent such a fracture, when the projectile
mass and velocity are specified.

If the target is sufficiently thin, or the impact speed sufficiently high,
the reflection will take place in a region where the target is incapable of
sustaining tensile stress, and a puncture results. At the other extreme,
where the target is sufficiently thick in relation to the severity of the impact,
the reflection will follow the classical equations of elasticity. In the inter-
mediate regime, the plastic and viscoelastic behavior of the target play a
role.

A rigorous theoretical treatment of such a complex problem, wvalid for
all regimes, is obviously quite difficult. This report presents an approx-
imate treatment in which the plastic regime is ignored entirely; instead, the
target is assumed to behave like a compressible, inviscid fluid up to the
instant when the shock reaches the free surface; thereafter, the classical
equations of linear elasticity are assumed to apply, with the incident stress
distribution given in terms of the pressure distribution behind the incident
shock. This approximation has been proposed before;3 the purpose of this

report is to examine its predictions more fully.
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It should be emphasized that the problem, when formulated this way,
is capable of solution without regard to the specific details of the incident
waveform. As is typical of linear problems, it is possible to identify an
indicial response; the solution for a specific excitation is then expressed
as a convolution of the incident profile with this indicial response.

Incident-Wave Profile

A considerable amount of information is now available concerning the
early period of deformation, during which the target deforms as a com-
pressible, inviscid fluid. Numerical solutions of the equations appropriate
to this regime were first reported by Bjork, 5,6 who used the particle-in-
cell method to obtain results in aluminum, iron, and tuff. More recently,
Walsh4’ 7 made use of both a particle-in-cell and an Eulerian computer code
to produce results with greatly improved resolution for an expanded list of
materials, including lead and polyethylene plastic. Parallel developments
based on blast-wave t:heorys—11 have provided useful approximations. Many
of these analytical developments are summarized in Ref. 1.

A typical representation of the pressure distribution along the axis
of symmetry is shown in Fig. 1. The coordinate system used is a cylindri-

cal one, with origin at the impact point on the front face of the target.
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The target thickness is denoted by /’) , while Es , a function of time,
represents the (spherical) radius of the shock at any instant.

The curves of Fig. 1, taken from Ref. 1, are based on the approxima-
tion that the flow can be represented as one half of a spherically symmetric
disturbance. Such a flow is sensitive only to the total energy available; its

12

momentum is zero by symmetry. Thus, as in all explosion problems,

the natural scale of distance in the problem, L,

o » 1s proportional to the

cube root of the energy release divided by the characteristic pressure in the
medium. It was shown in Ref. 9 that this pressure is givenby /’CZ ,
where ﬁo is the target density under normal conditions, and C is the
weak-wave velocity appearing in the linear shock speed-particle speed rela-

tion

U = C+ Sy, (1)

For most materials, the value of € is approximately equal to the bulk
dilatational wave velocity. 13 Typical values of S lie in the range from 1
to 2.

It should be emphasized that the curves of Fig. 1 are intended only to
convey a general impression of the disturbance generated by impact. Their
quantitative significance is limited by the approximations on which they are
based. For example, the stress distributions generated by an actual impact
are not spherically symmetric; for O+ 0 , the pressure distribution
would differ somewhat from that shown in Fig. 1. Furthermore, scaling
with respect to energy alone is not exactly correct, as Walsh and his

2

co-workers have shown.
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The general nature of the pressure distribution reveals a discontinuous
jump at the wave, followed by a relatively steep decay. These features
have also been observed in the results of Allen and Goldsmith, 14 who cal-
culated the stress waves generated by applying, to the interior of a spherical
cavity in an infinite medium, a pressure that rises instantaneously to a
maximum, and then decays exponentially.

Conversion to Incident Stress Profile

In the present approximation, the material response is assumed to
become elastic at the instant when the incident wave reaches the rear sur-
face 2 =4 . With such an approximation, the basic differential equations
describing the motion become linear. Thus it is unnecessary to be specific
about the waveform of the incident pulse. It is sufficient to find the solu-
tion for a step-function; results for an arbitrary waveform may then be
found from a Duhamel integral. Nonetheless, it is instructive to indicate
one method by which the incident waveform might be specified.

For example, the incident stress distribution can be calculated by
equating the pressure 4{3 from the fluid-mechanical theory to the mean
stress O’;V\ . Allen and Goldsmith have pointed ou'c14 that the product G

times the spherical radius K satisfies the plane-wave equation, i.e.,

"/t - R,
b= G = (A 2p)E ZZE <) @)

where A\ and /A are Lamé constants, ¢ the time, F(t) the value of
the displacement potential at & =0 , and (¢, 1is the dilatational wave

speed

X+2
C,Z= _Tﬁ (3)
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Thus, specification of the pressure versus distance at a given time 2’:, is

equivalent to specifying Gy at a time, for the stress-wave analysis,

given by ¢ = IQS&')/C

o @1&,)
?

£-KL = (@_e)/q

Once the function F 1is known, it can be used to find the other stress com-

ponents; for example

o - G F/f-’?/c.>+ 4,MF/(£;Q/C.) N (hezp) F! (£ -Fr,) @
R R <R

Knowledge of the function F over a given range of & at one instant is
equivalent to knowing it over a displaced range at a later instant, since it
depends only on the characteristic coordinate £ - ?/C,

t‘\ D =2
C

»/C

Thus, known conditions along AR are sufficient to determine conditions
along DE . To find out about the range CD , it is necessary to know
what was happening at £ = 0 during the time interval AC

For incident waves which lack spherical symmetry, the above consid-
erations do not apply, and a more elaborate description of conditions behind

the incident wave is necessary.
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Simple Reflection Formulas

Much of our present understanding of the mechanism of spall fracture
has come from consideration of the plane-wave case (see, for example,
the treatment by Rinehart and Pearson in Ref. 15). In that case, the exact
solution of the equations of elasticity reveals that the reflected wave is the

inverted image of the incident wave:

| Q—E 4 q-t ' A, ﬂ'i‘
e o 2 7 2 J‘/‘/‘!‘ 2
— T = - -
FREE. SURFACE <7 “T-- -t
f“-'\—_—

A simple extension of this solution to the spherical case is to assume that
the solution is still given by the sum of the incident wave and its inverted
image, allowing both contributions to decay with distance the way they would

in an infinite medium:

T [N
| % &
FREE sSuRFacE q./ ‘ -
S v

It has been pointed out before16 that such a construction is not an exact
solution of the problem. One of the objectives of the present report is to

determine how good the approximation is.
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III. WAVES DUE TO A SPHERICAL CAVITY

One means of studying the reflection of spherical stress waves is to
examine the disturbance produced by applying a pressure to the interior of
a spherical cavity in the medium. The waves that result have spherical
symmetry, and their reflection at a free surface has been considered in
recent papers by Aliev17 and by Kinslow. 18 This section presents a review
of their work, noting the physical significance of the various contributions
to the solution.

Basic Relations

The cavity, of radius Ec , is located with its center a distance h
from the free surface. Cylindrical coordinates v and Z , and spherical

radius K are measured from the center of the cavity

Displacements inthe p , 7z and K directions are denoted by « , Vv~
and (I , respectively. In terms of these displacements, the normal

stresses @  and shear stresses 7~ are given by

[, o, 2
e X(9»“+9:=+r> “M 37

10 AI-1821-A-3



= Mo & Y
“_cp‘>‘<9r+a%*’r>4'?’“r

_ ¢ | v . _ =
T (Z ) 5 T Tee o

L 24
Te= (2w 22 w20 2

our
Q‘ez >\ 2—75- +?_<X+I‘4>-g‘-

while the equations of motion take the form

o7 - 2
90?\ + rg + (.\—r Q‘cp =/% 2w
ar 2Z r It *
Ty 2% , Trz =/>ng{_ (6)
or 22 r It™

D% 2%
X Rl - p %t

These equations can be decoupled by use of the displacement potentials qS

“10 , and f , defined by

’

or o2 oz or a 22
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The equations that result are

2( 2% ¢, 1 _933) _ 2%
'\ or* az" or ot*
/M L k. 2F (8)
< (Qr” Yot Tra T t*
z Z
C,L(Q % + 2 .g.ié = __9 §
14 R 5 =

where C;' = }"‘/fo .

Source Solution

The solution for the case where the cavity experiences a pressure

o t<o

e = (9)
E>f=e¢ —$@) tro

has been given by Blake, 19 and others. It can be written in the form

3
_/i 2 ¥ .
(t Py= + ¢ \c ___—> A, (*x—% ]AAAA- bl (X_E-]AX (10)
é- / ) C|2' b, E _i /?(Cl O*-P i ( > [ )
where
- _ 2/9%1 i_ & _ MR 2(1-7
a, = 27_ )E,——KQ——;’)?—’Z" = l—Z—z%
&3 @3 (o M
(11)
§=c¢t -R+R,
and where Poisson's ratio is denoted by 99 . Complete expressions for

19

the displacements and stresses have been presented by Blake, by Aliev17

and by Allen and Goldsmith, 14 who present detailed results for the case

where 'P(-[:)= ?oe-ht .
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Image System

In order to find how this disturbance is reflected from the free sur-
face, one is led to consider the effect of a second spherical cavity, also of
radius Ea , and located at Z# = Zl’\ . Aliev makes use of such an
image, allowing it to experience the same pressure as the cavity at 2 =0.
The result is to produce zero shear stress at the free surface, but a non-
zero normal stress Cl;_,. . If, on the other hand, the image cavity exper-
iences the same pressure as the original one, but with opposite sign, the
stress O is made zero at the free surface, but a net shear stress 72,5
is developed. In either case, the cavity at 2 =2zh is not enough; the
complete image system must include a second contribution distributed along
the free surface in such a way as to cancel the nonzero stress due to the
two cavities. *

The stress components arising from the two cavities can be visual-

ized by considering a spherical displacement which decays with /© , cor-

responding to a compression

|

I

—

e
b

Professor Norman Davids of the Pennsylvania State University has
pointed out to the author in a private communication (April 23, 1964) that
the same conclusion can be reached simply by considering a source
potential @ =r=! £ (r- ct) , and an image potential ¢ = -r{{r+e f) .
The author is very grateful to Professor Davids for a very informative
discussion of this problem.
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For the case where a compression is applied to both cavities (as Aliev

does), this sketch of (I versus & can be used to construct the displace-

ments at four points (all having different values of & ) near the free sur-

face. The displacements have the appearance

s N

r’—"—‘ FREE SURFACE

u ~
PN
\
2v -
/ \
< Y
From this sketch it can be seen that the displacement gradients are as
follows
UL T fixed v 2 fixed u v £ixed
2 r /Z
T ¥
d
U L 2 fixe . r Liced

u 2 fixed
~__ \
r \72 | .

h T

Note that, at the interface, the contributions to (9%2) and to <9r/ar>z_ '
r

coming from the two cavities are of opposite sign, while the contributions

to (9“'/9,»>£ and <9U722>V‘ are of the same sign. Thus the net effect of two

compressive cavities is to produce zero shear stress

but a nonzero normal stress Q"z

Tra

at the surface,

On the other hand, if a tensile stress is applied to the interior of the

image cavity, so that it generates displacements which increase with &

14
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the resultant displacements have the appearance
J
/! .
e
S //’4

//
ru
7
_l___if

and the associated gradients are as follows

Z v
Uf r fixed UT 2 fixed v fixed
— —d— :r
= r w Lo
“ H{ VI Y fixed 2z y
\ % Z
| —
r z
In this case, the contributions to (Bu-/gr)Z and (9”/9&>r are of oppo-
site sign and cancel, while the contributions to (2« ) and v
(4%2), (27r),

add. Thus there is no normal stress T?.- at the free surface, but a net

shear stress -

s is developed, whose sign is negative
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In addition to the image cavity, then, the complete solution requires the
application of a positive distribution of Tyz oOn the free surface.

Effect of the Surface Distribution

As mentioned earlier, the approximation is often made that the surface-
distributed shear stresses can be neglected, and that only the compressive
source cavity and tensile image cavity need to be considered. Kinslow's
work, 18 for example, is based on this approximation. To estimate the accu-
racy of the approximation, it is necessary to determine the size of the con-
tribution from the surface stresses. An answer can be found by making a
slight modification of Aliev's results, since the solution for a compressive
source and tensile image can be found merely by changing, in Aliev's work,
the sign of the displacements due to the image (for example, the sign of "(‘z
in Aliev's Eqn. 2.4 is reversed). For the case where the source cavity

experiences a step-function pressure

o)f<o

10 - (12)

o, t >0

the resulting shear stress produced at the surface is given by

16 ‘ AI-1821-A-3



2’ra>2=h _ /44 4 58 Cos@l{% e—a;$<_/_iL5Mb,f—msb,f>
b R {"

g 3
/AW NS _39° @) - ""F(_L b )J
(&) Lt -F () |- g e e

The angle & is defined as cos'/_ﬁ , as shown below

and @, and b/ are defined as before, so that

0.,€="Z'7.(-§'—é—£+l> b,§=—2—j-£—’-(_9.é_£+l (14)
7\ R R i g r

These results are shown in Fig. 2 for the case _b_ =32 ‘7) :j—

As noted above, the shear stress produced bcy the two cavities is
negative; to cancel it, a positive stress of the same magnitude must be
added, resulting in stresses within the target, in addition to those gener-
ated by the cavities. In assessing the magnitude of this contribution, two

facts are important. The first is that 2'r£_> is of the order of 730 ,

z2=h
i. e., it is generally of the same order as the stresses produced by the
cavities. On the other hand, it is significant to note that the additional

applied stress is zero at (" =0 ; thus, according to ray-theory, 20 it will

make no contribution along the axis at the front of the reflected wave. The

17 . AI-1821-A-3



same conclusion is derived below in Section V for the case of a point-source
disturbance, namely, that for incident waves having spherical symmetry,
the tensile stress developed at the front of the reflected dilatational wave,
along the axis of symmetry, is exactly that given by the source and its
image. Behind the front, the simple solution is no longer correct, but even
there the approximation will be shown (in Section V) to be acceptable pro-
vided the stress amplitude decays rapidly enough behind the incident wave.

Off-Axis Conditions

At points located off the axis of symmetry, but on the reflected dila-
tational wave front, the effect of the surface stresses is compressive. Thus
the source-plus-image approximation will overestimate the tensile stress
at these points. This conclusion can be discerned in Aliev's results. After
identifying the surface stresses that must be added, he approximates their
effect by ray theory, using for this purpose the results of Bagdoev, a
summary of which has recently appeared in translation. 21 Aliev's result is

that the jump is stress (LG_?:] across the reflected dilatational wave is

given by

costBa
AsinG, (056, [~ 9% (16)

#[-=52]

where /7, and ©, are defined in the sketch above, and fo is the value

H(s,) =

of the pressure in the source cavity at £ = O+ . Figure 3 shows the varia-

18 Al-1821-A-3



tion of 4 with g, for 9 =1/4. The leading term (unity) in the last
bracket of Eq. (15) represents the tensile jump, due only to the source and
image. The next term, involving H , is of opposite sign, representing
a compressive effect.

Thus it appears that, for incident waves having spherical symmetry,
the source-image construction is exact at the front of the reflected wave,
along the axis of symmetry, where the maximum tensile stress is likely to
be developed. For points off the axis of symmetry, a more exact solution
would add a compressive contribution, while at points on the axis of symme-
try behind the reflected dilatational wave, the considerations given in
Section V suggest that a more exact solution does not alter the maximum
tensile stress, at least for incident wave forms which decay rapidly.

Kinslow's Work

The above conclusions are of importance in interpreting the work of
Kinslow, 18 who makes use of the source-image approximation, applying it
to incident waves which are finite sums of the Bla.ke—type19 solution. The

pressure in the source cavity is taken to be

N\

- - —not
—?—=/(,e°<£+/<,_ez°<t+~'+- e (17)

+

Actually, because of the conditions applied to find the coefficients Ki

(all
derivatives of 49 , beginning with the first and ending with the (1-Dst ,
are set equal to zero at t =0), Eq. (17) becomes a binomial series, which

can be summed as

f— = |- (/—- :‘dé)n (18)
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Kinslow presents results for selected values of o« and ¥ , evaluating ?,

from the formula

¢ = Lol
' r (19)
where ¢ is the target stress-wave speed, A the radius of the crater
that would be produced in an infinite target, y the depth of the free sur-
face, and v the particle velocity behind the incident shock when it

reaches the free surface.
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IV. WAVES DUE TO A POINT FORCE

A second means of representing incident stress waves like those
encountered in hypervelocity impact is to consider the application of a force
to one side of a slab of finite thickness. The solution for the disturbance
which propagates into a slab due to the application of a distributed force
has been presented by Huth and Cole, 22 and by Thiruvenkatachar. 23 The
solution describing the reflection of these waves by a second free surface
has been given by Thiruvenkatachar. 24 The waves induced by application
of a point force, and their subsequent reflection, are discussed by Broberg,
and by Davids. 26

A point force generates a wave whose shape is spherical, but the
stress distribution behind it is not spherically symmetric. Furthermore,
an incident shear wave is generated; no such feature appears in the solu-
tions of the previous section.

The most distinctive feature of the solutions discussed below is that
the laws relating the strengths of incident and reflected waves differ consid-
erably from those that apply for spherically symmetric waves. The main
purpose of this section is to discuss this feature.

Distributed, Step-Function Load

It is instructive to start from the solution for a step-function pressure

applied over a circle of radius @

*
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ZI”':‘:O _2-—_-0/2_-;})
‘ r
T 2 o =0 , z=h (20)
P oL
1 o , Yo >a
- PLE)  rea
TN

s

The case treated by Thiru.venka.tachar‘Z makes use of a delta function
instead of the unit step £ (t) . The problem solved by Davids is that of a
point force  appliedat (" = 0. Thus it should be possible to recover

the latter results by taking the limit @ -—+0, FP-+ @ , in such a way

that
Tt P = F (21)

Both of these authors employ the Laplace transform to derive formal ex-
pressions for the transforms of the various stress components. These ex-
pressions are then expanded in series whose successive terms represent
the incident, reflected, and multiply reflected waves. For example, it is
possible to sketch the progress of the various waves along the axis ¢ =0

ina z # diagram
J
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o h

In the analysis that follows, only the incident dilatational (P) wave, and
the reflected dilatational (PP) and shear (ps‘) waves are accounted for.

Thus the results given below give no information about the state of affairs

s
trd

that exists after passage of the incident shear (s) wave.
The Laplace transform of the solution for an applied pressure P 4(¢)
can be found by replacing P , wherever it occurs in Thiruvenkatachar's

analysis, by P/,‘, , where GD denotes the transform variable

Pl = [ tre M a 22

With this replacement, the transform of the stress component QE_ , in
the region affected only by the incident dilatational wave, and the reflected
dilatational and shear waves (i. e., the triangle, in the sketch above,

bounded by the lines £=0, zZ=) , € =2/ )is%t

_ aP ( - _ %
¢Z=——£QO+Q\+QZ} (23)

f

* Very little is known at present about the characteristics of waves of this
type that are generated in hypervelocity impact. Hydrodynamic analysesl’ ’
do not admit such waves, and they have apparently not been observed as yet
in solutions which include material strength.
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where

o= S T ()

z
o <Nl _N’-) ° (25)
~h(X+8)+ 3Z
NN h@+p)+ /2

_ZhNe o T (rE) T (a¥)Af
(M-n,)° ° (26)
In these expressions, J; and jl_ denote Bessel functions of the first

kind. The functions /\/' » N, » X , and ﬁ are given by

N = 24 ¢, (ft"‘—ﬁ; /\/Z_: 24 <, O(ﬁgz (27)
?Z Z(z_ 792.

mz/fz‘*' /(}7%? /3 = 51“’ d’j/c;_' (28)

In general, the inversion of these transforms is rather complicated, but can
be effected by use of Cagniard's method. 28 The process is relatively
simpler when appliéd to conditions along the axis of symmetry, particularly
at the wavefronts. The remainder of this section is devoted to the extraction

of these results.

Inversion of the Transforms

Thiruvenkatachar begins the inversion of these integrals by making

the change of variable
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o 1 (29)

0= 2 [T g ()7 (s e oo

G - - [A0D o 0B ) i) 7 (apt)y
£ 228 o 4 o T

(32)

x5 () 7 () #

where

C, |
#= ?.=7 (33)

(34)

z . -
R S e
The next step is to use an integral representation for the Bessel-function

product

5 () 5 () < £ [ 5 () ay 0
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where K , )C , and & are defined by
R-= a'+r*-2ar cnd
a Esm’)ﬁ = rsndgé (36)

¢ - Res = a-veosd

Note that X depends on @ , ¢ , and ¢ , but not on YZ . If the re-

maining Bessel function is also replaced, by the integral representation

T, [

.(VP;L’?> PR QEJfTW[_g _&%@ mq/] smiday G

and if the order of integration is changed, the result is

Q ~i—@ej (a-rwnﬁ)j sintd

} (38)
Xfo g %[ <2W+Ly(€ cos+)] %’yl Ay 4

R =7?g: 3 iT(Q—F6054>> irsf.n" Voo«

(39)

 [ALR) o[ 4 ([ae) (T sug )] oyt de
é: :—@; QQJT(a—rw54>) Jrﬁmlk}/ <
meg, o s
(40)
% (;-;)}? %’Ha W%WW‘*%‘*L‘)—ZW*?T+iﬂfm¥ﬂcfm+dcﬁ
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Cagniard's technique is now applied to these, by making the changes of

variable, in (38), (39), and (40), respectively

qz‘: =z a+~4L +Zv(,€cos4/ (41)

(42)

Gt = (2h-2) /14> +L'ﬂ/?cos¢‘

Gt =h (}V e +/'_*’?'ZT>"Z/'—W +£?»7/?cos7b (43)

As Vl varies from zero to infinity, 7t traces out a path in the complex

plane:

It | <t oA

A

o [grlh-z
G

The path of integration can be deformed, 28 so that it lies along the real

axis in the t -plane, and the result is

Qo = /397' &Joo [[ (@_ rcos4>> (Yl(é >_22_. 0(4)6&#} AE (44)
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@, = e J::_%Q_Ff[ f(ﬂ-mﬁ‘#)fww F-;.(mes)ﬁ-’- Ma@]a& (45)

T&r

G

..:< ,@_ S ‘P [f (a- rwscﬁﬁ sin® (v\(t))ﬁdu/*dcﬁ]dt (46)

T3
(grdh-2
G
where
F = ’Z’Q B F = ’ZA (4"'32 4 )
:("O -8 ) L(YZ) <’4"/3)L ( > (:4 B) (47

and where the (complex) variable v( is defined as an implicit function of
the (real) variable t by Eqs. (41) - (43), respectively. Equations (44) -
(46) can now be inverted by inspection. If ¢y is set equal to zero, the con-
tributions of the three waves to the stress along the axis of symmetry are

found to be

o - _ (48)
>9 TrC”/AD% ﬁ’ 2>,7,9=_7r—<,” 39?2(@ ) G-f>s— TCF ??3 (Ob)
where

Nt =1(t-%)@ iﬂ_&n"u‘/ T (49)
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— _ 2h-2 LI 4
?z(ﬁ = i(t c )ﬁej s E_Z_Z. Py (50)

?_,K‘t) = 1( M e J Sintg 5 _—Z- pa (51)

and where K 1is to be replaced by @ in Eqgs. (41) - (43). If the limit

A== [P—=cp 1is now taken, with FH* = f:/"._ , then )? no longer

depends on xP ; the integrals in (49) - (51) can be worked out, and the result

is

Ze” = _f_C_ -z ﬁ
- Q‘QP py 11 (é /C.> i f (52)
z;c, GTZ> _ _d_{ _ 2h- 2) A j (53)
pp AL
2we”t _ 4 (¢+1)h -2
T = - -
DR A I

In these last three equations, ‘rz is defined as an implicit function of t

by Eqs. (41) - (43), with @ =0.
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Stress Discontinuities at the Wavefronts

Along each wavefront, 3? is zero. The values of the stresses
. G2) , t th front can be d i ;
WE)P 2 )op Q)Ps at the wavefront can be determined rel

atively easily, and are found to be

F‘
%), = o= (1+8§7) e zect (55
(56)
=_—F 3 = 2h-
0-2)” 21 (zh-2)" (/+Z4f) ) for 2= zh-at
EF ¢° 57

GZ)Ps-—— ™[ h-(h-2)g)” s for 2= (gr)h-at

In crossing any given wave, the contributions from the other two waves are
continuous; thus Eqgs. (55) - (57) also give the stress discontinuities that
occur across the various waves,

All of the foregoing formulas agree with Davids' results. 26 Equations
(55) - (57), for example, can be used to recover the stress discontinuities
shown in Fig. 8 of Ref. 26, and can also be derived from the general
formulas given there. Other checks can also be made; for example, Egs.
(55) - (57) add up to zero at the free surface =) .

The most striking feature of the expressions for the stress discontin-
uities lies in the fact that they differ considerably from those describing
spherically symmetric waves. In particular, the simple source-plus-image
approximation would say that the formula for the jump in stress across the

reflected dilatational wave ought to be derivable from the incident stress
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formula [Eq. (55)] by changing the sign, and replacing Z by zh-2

But such is not the case. A compression wave of unit amplitude is re-
flected as a tensile wave of amplitude (l+24%3>/(\ + 8%3) , a number
which is typically on the order of two. The reflected shear wave then im-
parts the amount of compression needed to preserve the zero stress condi-
tion at the free surface. Moreover, the contribution from the reflected
shear wave is nonzero even at 2 = , in further contrast to the spheri-

cally symmetric case

J
Uz

125
\.
AN

T '

/F |

1 -

L-5p

It is clear that such an amplification of the tensile stresses generated
upon reflection has an important bearing on the spall fracture problem. To
fully assess its importance, however, two factors must be examined. The
first is to determine how the amplification factor for reflected waves de-
pends on the degree of departure from spherical symmetry. Unfortunately,
there is no information available at present that might be used to infer this
dependence. The second item requiring attention is to determine how far
the incident stress distributions encountered in hypervelocity impact depart
from spherical symmetry. At present, the only pertinent information avail-

able consists of the pressure distributions found in the numerical solutions.
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V. SPHERICAL POINT-SOURCE SOLUTION

The discussion of the two previous sections indicates that a definitive
solution for reflected stress profiles cannot be given until the effect of
off-axis variations in the incident stresses have been examined more fully.
In spite of this reservation, it is nevertheless instructive to pursue the
solution of the spherically symmetric case further. This section presents
such a study, using for the excitation a point source instead of a cavity of
finite radius. The purpose of this section is twofold: first, to show explicitly
how the classical results of Cagniard, 28 long known in the field of seis-
mology, can be applied to the present problem; and second, to arrive at
some very general conclusions about the shape of the reflected stress pro-
file and the influence of the incident profile by writing the solution in terms
of a Duhamel integral.

Basic Relations

The coordinate system is the same as that used earlier, except that

ale

some new notation is introduced

-2 —— FREE SURFACE

TMAGE

* The # -coordinate used here would be A-2 in Cagniard's28 notation.
Thus, the ¥V -displacements and the derivatives 3/22 used here differ by

a sign from those of Cagniard. The stress Qg , which involves only
ar/at , can be taken directly from Cagniard's results by simply replacing
2 bY p-2
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[ and /?/ denote distance from the source and image, respectively,

while 7?| and (& describe the minimum-time path for a wave that travels
from the source to the free surface at the dilatational-wave speed, and
thence to the field point yJ Z  at the shear-wave speed. The angles T

and I, and the distances <, and IS, are determined from the rela-
tions (for given ( and Z )

sin I, G
20 - = 2= yr= sinI, +& snT
sSin I)_ c{_ ? ' ' z 2

(58)

h=®& cos I, h-2 = & cos T,

e

In terms of the displacement potentials defined in Eq. (7), " the stress com-

ponent (T, along the axis of symmetry ¢ =0 is

G;)rzo =2zX jif)

r=o

2 9",[/
+(>\+z/u) gﬁ)fﬂ +ap o7 >r (59)

Method of Solution

Cagniard28 writes the general solution in terms of two influence func-

tions A and B

t /
b= [Flteyale;nz) do 60

o

¢
[ Flle-2B (rine)r (61)

J

i

* Cagniard28 uses L/) and I for what are called d; and hl/ » respec-
tively, in this report.
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where F (ﬁ) , the displacement potential at the source, is considered for
present purposes to be given in terms of the incident stress distribution by
Eq. (2).

The values of A4 and S change discontinuously at various instants,
signalling the arrival of various waves. Thus in taking the derivatives called
for in Eq. (59) under the integral signs in Eqs. (60) and (61), there will be
contributions from the | - and 2 -dependence of the integration limits.

For the moment, these contributions will be ignored; they will be added

later. Carrying the derivatives under the integral sign gives

t
z 2 62
_@Yﬁzj F(¢-7) 2 A A, _4f st} A ©2)
o MZp T a2 NZP G092 =y

By use of the Laplace transform, Cagniard shows that

o, T« RS

63
Al = (63)
—é—— _Zl-; +A3 (’t) ) T >/€S

where the transform of 143 is

o o 3 _pa(2h-2
f e'?t’/% ) dr = -zf bu” Jo ﬂmr) e P >c£u, (64)
v} 4} D(a)

and where

a=/ur+ S° ) b = /u+s*

D) = (u*+ 5%) - aba*

(65)

* The notation S= ,» s= I/CL » introduced by Flinn and Dix, is
used here. !
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The three terms in Eq. (63) correspond to a source, an image of opposite
sign, and a third term caused by the surface shear stresses.

The transform of B(’Z,’) is

a -—6’1'
f@ 8(2’) At =
o (66)

B P u (e S [ah +b(h-2)
-;—of ul /)d[J(flmr)] i ]da

D(w) AV

Inversion of the Transforms for ¢y =20

Most of the emphasis in Cagniard's treatment is on the case where
r/h >> ] , the case of greatest interest to seismologists, and the inver-
sion of the transforms is a fairly complicated problem. The case consid-
ered here, | =0 , is the opposite extreme, and Cagniard's procedure
for inverting the Laplace transforms can be applied very simply. Differen-

tiating Eq. (64) twice with respect to y gives

fme"FT‘_a_’;% i b(f[j;(?w)_ %}e-/ﬂa— B e

) or D)

As y—=0

_»apr 9,4 -?Q(Zh-2'> 68)
?zf d? jD(u) A

and with the new variable

r =a(zh-2) =/u*+ 3* (2h-2) (69)

Eq. (68) becomes
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oo TT , 2 ooy
-»T %A 4 b
fe b [ff (—97;2 d’rdq‘_—} A = J e Pt = or (70)
e V=0 D -
° S (zh-32) (Zh- 2)
All functions in the integrand on the right are considered to be functions of

T ; for example, D= 'D[u (’C')] . The inversion can now be accom-

plished by inspection, giving

(9f7’> A1 = @ ) T < S <Z'A-—Z)
(71)

4
- __9.{__5_&_’4'_} , T >S(zh-2)
(zh-2)" D

The reason for evaluating this first integral, rather than the function itself,

is to facilitate a later integration by parts. Exactly the same series of

steps can be used to show that

9’4’) dr = o , T < S (zh-2)

(72)
P bu.mdzZ‘
= = {-z2— T> S (zh-2
9@{ (zh-z)"D} ’ (2h-2)

where, as in (71), ¢ (r) is defined by Eq. (69).

Differentiating Eq. (66) with respect to ¥y and g , and setting

Y =0 gives
Fere) .-
raz (73)
@® 1, s? _blah E(h-i)
= | bu? (w4 /7'>ef[ " ]da
o D)
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In this case, the appropriate change of variable is

r=ah+blh-2) = fu+ 3* h + /L +s (h-2) (74)

which after inversion leads to

’t z
f (2 B> s
> o \oroz)

O

, T < Sh +s(h-2)
(75)

5 b (L 52 ) _
—JEJ(D[M/@ + (-2 } /T2 Ehes (he2)

It is useful to put these results in dimensionless form, by introducing the

notation

“=Sx , a=S«= 30, b=358=5/crg"
D = 5,4—@ - 54{(x7‘+%1/7_>’-- o(ﬁx"}

Z )(3
;szsaﬁ/= Sﬁ%dﬁ%ﬁ)—% —%— —z«x/fx}

(76)

\/ = (‘//(L Z>\ E (2362> -
‘ >\+Z/A o) o™ (=0 |

T -
ot (T2 .
v—c.hof(-g-z—fr_aa

=0

- -~ 4&‘: 6(973 2
V.= ¢h ok L B,
where (‘)/ means A/d’)‘

When the differentiations with respect to T indicated in Eqs. (71), (72),

and (75) are carried out, and the results expressed according to the notation

in Eq. (76), the results are:
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™

-7

(W+w3<z-f7 :.Ei_{§zi§[:f.+4% —%%342/l4—#éﬁf’§

(77)

- 20| XL 28x*_ xfx O L B
Tl e S SR )

v, - 2(1-29) %4 ﬁg/ﬁ+6&F[2%A

-7 [/6 +(\-—2/h>o(]z
(78)

L XA 2K “%fy—xzm+<“i&ﬂgl+2xgé‘
X ﬁ ﬁ /§+ <\—%/h>0( '@

In Eq. (77), the parameter ; is defined as

<,?/L,
= — (79)
2- 2/},
/
and the quantities x , 5 , & , /ﬁ , and /O are all functions of
¢ » given by Eq. (69), which becomes
Y = 1'77_ I (80)
/
In Eq. (78), the functions o , % , ,8 , and /9 are the same func-

tions of x as before (defined in Eq. (76)), but the dependence of X on 27

and # is different. It is given by Eq. (74), which becomes:

C
—f— =/x%+1 4 (t— %)\/XZ+@Z (81)
The inversion of this leads to a quadratic in x> , the correct solution of

which uses the minus sign:

38 AI-1821-A-3




X = (82)

where

T ()
=g -2 - - ()T - e (55

The functions (V\+\/1_> (2, 2/h>7' , and \/3 are shown in Figs. 4 and

5 for ‘ﬂ =1/4. \// and |/, are zero for T<| » while Vs is zero
for 5%4 H—? (,_Z-/h> . It should be noted that the sum \/,4\/7_—/-1/3

vanishegs at the free surface E/h =1,

Terms Arising from the Limits

When taking derivatives under the integral sign in finding the expres-
sion for Q\z , terms arising from the ¢ - and Z-dependence of the
integration limits were omitted. These terms must now be added. During
the time interval between the arrival of the incident dilatational wave and

that of the reflected dilatational wave, the potentials are simply

A== , B=o (84)

and the corresponding stress along the axis is that given earlier in Eq. (4)

% _ S°F'() +z(/-27)) SF (=) + F(-) (85)
A2 2 (-7 2" 2*

39 AI-1821-A-3



where the argument 4 _ Sz is denoted by (-) . After arrival of the

reflected dilatational wave, but before the reflected shear wave, the poten-
tials are %/ =0 , and
’ RS N t
b= 2| TFDar (% i) Fn v [T FU) 4
rRs

R'S r's
(86)

Flt-3R)  F(t-3”’)

¢
- p [ Fi-o) A @)t

se'

In arriving at the first two terms of this expression, F(O) is taken to
be zero (as is |.':/(o) below) in accordance with Cagniard's procedure for
evaluating the discontinuities in the solution. Differentiating Eq. (86)
twice with respect to ¥ leads to a very lengthy expression involving,
among other things, 92/9(‘ , Qzl/gr\ , 926/9,,,_ , and 922//2,,2_. )

where

2 =/r+z" ) g/ =/rt+ (2h-2)" (87)

‘ When f——)-o N

’ z 25/ |
xk _ R _, 2K __ 1 0 2% __

/
or r / orr 2 or® Sh-2

(88)

Many of the terms in the lengthy expression for 9’2‘3/8(-,, vanish when

Y =0 , leaving:

I Bk B P e
=
f—>o

or* Z 2z zZh-2 zh-2 (Zh—'i‘y-
(89)

t 2,
_S’F/(+)A3(S(zh-2);0)2->§ .+-f Fl(f-t‘) (_22;:}—3_ A
S (2h-2) r=e
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where the argument £ —S(zh_%> is denoted by (+). The derivative

¢/ 1>

as y—s o ,

(0 can be worked out in similar fashion, using the fact that,

5% x __, £ Ei-
S T e ° (90)

The result is

_91¢> = g*FO) (28F) | 2F() _ g F'M) _2SF) _ 2FX)
22%fr s z z* 23 zh-2  (2h-2)" (2%-2)3

(91)
+ FII(+) 43 {S (Zh—'?:) ; 9, Z:> - SZ F/(+) _2__'4_3 (5’(2A- z.))- 0/2)
3T

, t
oh A
—ZSF/('{—) 223(5(?/"\’%>/'O,&> -+ J L\/:/)(f-l‘) (’5;;'3 r——od’b
S(zh-2

When the reflected shear wave passes, the terms derived from cb do not

change, but a new contribution comes from xp

t
¢=f Fl(t-2)B(T;r 2) dr (92)
564-5!?1_

When the mixed derivative of this quantity with respect to ¢ and 2 is
formed, and evaluated for ¥ =0 , it becomes necessary to know certain
derivatives of /?: and 727_ . These are most easily worked out by using

the approximate form of Eqs. (58) valid for Yy—>o0

r= e€+J
W
I = }6 B = h+oOr) 93
Tn i }J
= Bz h-z «O(r)
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From Eq. (93) it follows that gzl/ar s 92/22 , 9&/2'0

=-|

212'/2!‘22- , 212.’/9(9& are all zeroat ¢ =0 , while 9£%2>

r=o
The result is

ia' 2 R 28 _
oroz >r=o =-sF (f’ Sh- SM'?));:(SL) +s(h-2); 0,2> o

/ 2B »
* js’h+s(h-z) F (é‘ﬂ oraZ r=od°

If all the extra terms are now collected, and the convention used that F

and all its derivatives are zero for negative argument, the complete ex-

pression for the stress becomes

Te)r=o _ ™ {_ SF'<)  FO) N S F(+) L _F&) }

ezl 1P z* 23 @nh-2)  (zh-2)°

, STF'Q)  2SF'0) | 2FR) | S'FMw) _ 28F) | _2F()
> 7 22 2h-2 (zh-2)* (2h-2)*

(95)
29 SEWA(SGh-2);02) 2 . ity s :
- 22 SEOALGDi08) | et (stae)jo2) - 5l B(otan) 02)

—23F'(+) %(S(zh-z);o,i) - —g(I'_‘TZﬁ)SFI(L‘ ~Sh-s(h-2) %(S'PHS(“-Z) i Q*)

t 2 2
+J Fiit-t) 20 M,  FHy, 2(1-29) 5B L
2 =¥ ar*  5z* =2 araz J._,

Further simplifications of this expression are now possible. The first two
lines correspond to the solution that would be given by the source and its
image.

Some of the remaining terms are zero; by a straightforward appli-

cation of Cagniard's method, it can be shown that
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,43(’&;0,%) =0 , %< 3(zh-2)
(96)
-2Z2butr

- D(u)(zh-z)" T2 S0h2)

Thus A, (S (zh-2) ; 0, Z> =0 . By differentiating (96), it is found that

94;> —16 (97)
2T /p = S (zh- z.) ﬁas (Z"\—E)”

and it can also be shown, either by differentiating (96) or by inverting

9'43/92 , that

oA +/6

> = — (98)
22 /o= S (zh-2) 093 (2h-2)
Finally, inverting 98/9', reveals that
B — 4
or 2 (99)
r=3h+s(h- 2) @%" < .
3!0
Thus Eq. (95) is reduced to
T2 )r=0 _ q‘%){=o>
rrzp NZM [ Soukce + TmAGE
(100)
[ Elli-r 29 9443 9"/)3 2(1-29) 2*B
f ¢ ){’ » ar T o2 | 9 ooz rféf
1638 F' -
- = (+3‘ . 2 (1 7,1)) (£ Sh-s(h- %>> (4;\ S
9% (2h-2) -7 qrh+ (1= 25 )T

The last two terms can now be absorbed through an 1ntegrat1on by parts.

Let
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t A = z z (101)
_ (2L 2R zAs _ 2(i-29) 278
\)"—i"’) are l “ —oj -2 5ro2 <
Then
t 2 z
~/ 2y A 2*s z(i-29) 9B _
J Fit-z) {/—7} o 2 T T orom fﬂ: B
t t
= [F'(t-?) (n; +V‘Q} + [ F/<f‘2“)\f51
S (2h-2) Sh+s(h-2)
(102)
t /
+ [ F'E-D) (v s odr
= —F/ft-2@h-2) [ren —F(t-3h - stn- %>[
( >[ ;—=S( ( ) =Sh+s(h-2)
J Frt-v)(viomsv) b
Since
(Vi+ o) 1= -/tS
(547 Jiw __leS
=SGh-2)  ah Y (zh-2)
(103)
\/3>x =0 _ 16
<v;31~=5h+5(h-2) Y 5( (h-2) /1
! ? [+ ?[,‘>
The final expression for Jz can be written in the form
T t
-7:)(:0 _ ¢%>r=o> +J F//(t_,a_> ('1/‘-4—!)'7_4-1-)'5) A7 (104)
e )\+er SOURCE +IMAGE o
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The integral appearing here collects all of the corrections to the source-
image solution that arise from the surface-distributed shear stress. It
introduces no discontinuities, even at the reflected shear wave, and has
the effect only of altering the profile.

Final Formula

It is useful to employ the dimensionless variables

g = —é‘: , V= Chtv  Fl(e) = cth () (105)

In terms of these, Eq. (104) becomes

Cfé/h
Q'e>r=o _ TQr—-o> Y /et - ) 106
WazZpo +J G (77_—9)\/(6’ hi? 46 (100)

A+2ZM
U %oee +imMegE  ©

The function 3/// appearing in this integrand is to be found from the inci-
dent stress profile, for example by the method described in Section II.

The variation of the influence function appearing in the integrand of
Eq. (106) is shown in Fig. 6 for the case %/‘,\ =0.8 , C'{:/h =1.5 ,
4 =1/4. For points as yet unaffected by the reflected shear wave, the
effect of the integral is to contribute an additional tensile component. After
passage of the shear wave, a compressive contribution is felt. Actually,
the integral correction term will not be very great in cases where 2—’ “
falls sharply from its maximum, since the integrand rapidly becomes small

under such circumstances.

General Conclusion

It must be emphasized that Eq. (106) is restricted to cases with spher-

ically symmetric incident waves; for such cases, the integral in Eq. (106)

45 AI-1821-A-3



represents, in a general but concise way, the correction to the source-
image system due to the surface-distributed shear stresses. Generally
speaking, the correction term will have the effect of modifying the
reflected-stress profile slightly, but will leave the maximum tensile stress

unchanged, especially for profiles which decay rapidly.
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V. CONCLUDING REMARKS

It is well to reiterate in conclusion the approximation that forms the
basis of this entire study, namely, the use of a linear elastic model. In
applying the results above to the interpretation of spall-fracture experi-
ments, serious reservations must be held concerning the effects of non-
elastic response. These may affect the wave propagation itself. In addition,
no attempt has been made to invoke a fracture criterion. Even if the linear
elastic model is accepted, one must still decide whether or not the fracture
stress is time~dependent. It is unfortunately the case that the results of
spallation experiments are the product of an unknown mixture of wave-
propagation effects and fracture-criterion effects. There would appear to be
little hope of drawing firm conclusions about the relative importance of
these two sources of uncertainty, except from experiments done in internally
instrumented targets.

On the other hand, it is important, in constructing a rational theory
for this problem, to be sure that all the implications of even the most
primitive approximation are fully understood. One contribution of this re-
search has been to reveal the significance of the simple source-image
model. Results derived from such a model depart only slightly from the
exact linear-elastic results for cases where the incident wave is spherically
symmetric. For such cases, and for incident stress distributions which
decrease rapidly behind the incident wave, the maximum tensile stress (on
the axis of symmetry, at the wave front) can safely be calculated by the
source-image model.

A more important result has been to call attention to the fact that the

reflection laws inherent in the source-image model maybe drastically
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changed for cases where the incident stress distribution is not spherically
symmetric. In such cases, compression waves of unit amplitude are re-
flected with more than unit amplitude from a free surface. Unfortunately,
not enough is known about this solution at present to indicate the connec-
tion between the degree of amplification and the extent of departure from
spherical symmetry.

One of the items necessary in elucidating these questions is a physical
explanation of why an amptlification occurs at all. It is also important that
a study be made of incident stress distributions whose angular variations
are intermediate between those of the spherically symmetric case and those
generated by a point force. Finally, the extent of angular variations
present in existing hydrodynamic and viscoplastic solutions should be exam-
ined.

Until a thorough investigation of these points is made, it must be
recognized that there is no firm theoretical basis for many of the conven-
tional rules of thumb often used in dealing with spall fracture -- for example
the unit reflection coefficient, and the relation between the spall thickness

and the wavelength of the incident disturbance.
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